【LED子系统深度剖析】三、硬件驱动层详解

【LED子系统深度剖析】三、硬件驱动层详解 #

上篇文章我们了解了子系统的框架,下面我们来分析驱动框架中每层的实现以及作用。

image-20230417084033734

LED子系统中,硬件驱动层相关文件在包括:kernel/drivers/leds/ 目录下,其主要的函数有:led-gpio.cled-xxx.c,其中led-gpio.c为通用的平台驱动程序,led-xxx.c为不同厂家提供的平台驱动程序。

我们在这里主要分析led-gpio.c

1、gpio_led_probe分析 #

打开该文件,直接找到加载驱动的入口函数gpio_led_probe

1.1 相关数据结构 #

1.1.1 gpio_led_platform_data #

struct gpio_led_platform_data {
    int 		num_leds;
    const struct gpio_led *leds;

#define GPIO_LED_NO_BLINK_LOW	0	/* No blink GPIO state low */
#define GPIO_LED_NO_BLINK_HIGH	1	/* No blink GPIO state high */
#define GPIO_LED_BLINK		2	/* Please, blink */
    gpio_blink_set_t	gpio_blink_set;
};

结构体名称gpio_led_platform_data

文件位置include/linux/leds.h

主要作用LED的平台数据,用于对LED硬件设备的统一管理

这个结构体用于父节点向子节点传递的数据时使用

1.1.2 gpio_leds_priv #

struct gpio_leds_priv {
    int num_leds;
    struct gpio_led_data leds[];
};

结构体名称gpio_leds_priv

文件位置drivers/leds/leds-gpio.c

主要作用LED驱动的私有数据类型,管理全部的LED设备。

这里的num_leds通过解析设备树的子节点的个数来获取

leds[]根据获取的num_leds个数,分配对应的空间,来初始化相关数据

1.2 实现流程 #

static int gpio_led_probe(struct platform_device *pdev)
{
    struct gpio_led_platform_data *pdata = dev_get_platdata(&pdev->dev);		//	检索设备的平台数据
    struct gpio_leds_priv *priv;
    int i, ret = 0;

    if (pdata && pdata->num_leds) {												//	判断平台数据LED数量
        priv = devm_kzalloc(&pdev->dev,
                sizeof_gpio_leds_priv(pdata->num_leds),
                    GFP_KERNEL);
        if (!priv)
            return -ENOMEM;

        priv->num_leds = pdata->num_leds;
        for (i = 0; i < priv->num_leds; i++) {
            ret = create_gpio_led(&pdata->leds[i], &priv->leds[i],
                          &pdev->dev, NULL,
                          pdata->gpio_blink_set);
            if (ret < 0)
                return ret;
        }
    } else {
        priv = gpio_leds_create(pdev);											//	创建LED设备	
        if (IS_ERR(priv))
            return PTR_ERR(priv);
    }

    platform_set_drvdata(pdev, priv);

    return 0;
}

函数介绍gpio_led_probeLED驱动的入口函数,也是LED子系统中,硬件设备和驱动程序匹配后,第一个执行的函数。

实现思路

  1. 通过dev_get_platdata检索设备的平台数据,如果平台数据中的LED数量大于零,则使用devm_kzalloc为其分配内存空间,并且使用create_gpio_led进行初始化
  2. 如果平台数据不存在或LED的数量为零,则使用gpio_leds_create创建LED。
  3. 最后,设置驱动程序数据,并返回0,表示操作成功。

数据结构:该函数主要包括了两个数据结构gpio_led_platform_datagpio_leds_priv

2、gpio_leds_create分析 #

2.1 相关数据结构 #

2.1.1 gpio_led #

/* For the leds-gpio driver */
struct gpio_led {
    const char *name;					// LED名称
    const char *default_trigger;		// 默认触发类型	
    unsigned 	gpio;					// GPIO编号
    unsigned	active_low : 1;			// 低电平有效
    unsigned	retain_state_suspended : 1;
    unsigned	panic_indicator : 1;
    unsigned	default_state : 2;		// 默认状态
    unsigned	retain_state_shutdown : 1;
    /* default_state should be one of LEDS_GPIO_DEFSTATE_(ON|OFF|KEEP) */
    struct gpio_desc *gpiod;			// GPIO Group
};

结构体名称gpio_led

文件位置include/linux/leds.h

主要作用LED的硬件描述结构,包括名称,GPIO编号,有效电平等等信息。

该结构体的信息大多由解析设备树获得,将设备树中label解析为namegpios解析为gpiodlinux,default-trigger解析为default_trigger

2.1.2 gpio_led_data #

struct gpio_led_data {
    struct led_classdev cdev;		// LED Class
    struct gpio_desc *gpiod;		// GPIO description
    u8 can_sleep;					
    u8 blinking;					// 闪烁
    gpio_blink_set_t platform_gpio_blink_set;	// 闪烁设置
};

结构体名称gpio_led_data

文件位置drivers/leds/leds-gpio.c

主要作用LED相关数据信息,主要在于led_classdev,用于注册设备节点信息

由设备树解析出来的gpio_led,然后将部分属性赋值到gpio_led_data中,并且初始化led_classdev相关属性,并且实现led_classdev结构体中的部分函数。

2.2 实现流程 #

static struct gpio_leds_priv *gpio_leds_create(struct platform_device *pdev)
{
    struct device *dev = &pdev->dev;
    struct fwnode_handle *child;
    struct gpio_leds_priv *priv;
    int count, ret;

    count = device_get_child_node_count(dev);		//	获取子节点数量
    if (!count)
        return ERR_PTR(-ENODEV);

    priv = devm_kzalloc(dev, sizeof_gpio_leds_priv(count), GFP_KERNEL);
    if (!priv)
        return ERR_PTR(-ENOMEM);

    device_for_each_child_node(dev, child) {
        struct gpio_led_data *led_dat = &priv->leds[priv->num_leds];	//	与gpio_leds_priv结构体关联
        struct gpio_led led = {};
        const char *state = NULL;
        struct device_node *np = to_of_node(child);

        ret = fwnode_property_read_string(child, "label", &led.name);	//	读设备树属性,赋值gpio_led结构体
        if (ret && IS_ENABLED(CONFIG_OF) && np)
            led.name = np->name;
        if (!led.name) {
            fwnode_handle_put(child);
            return ERR_PTR(-EINVAL);
        }

        led.gpiod = devm_fwnode_get_gpiod_from_child(dev, NULL, child,
                                 GPIOD_ASIS,
                                 led.name);
        if (IS_ERR(led.gpiod)) {
            fwnode_handle_put(child);
            return ERR_CAST(led.gpiod);
        }

        fwnode_property_read_string(child, "linux,default-trigger",
                        &led.default_trigger);

        if (!fwnode_property_read_string(child, "default-state",
                         &state)) {
            if (!strcmp(state, "keep"))
                led.default_state = LEDS_GPIO_DEFSTATE_KEEP;
            else if (!strcmp(state, "on"))
                led.default_state = LEDS_GPIO_DEFSTATE_ON;
            else
                led.default_state = LEDS_GPIO_DEFSTATE_OFF;
        }

        if (fwnode_property_present(child, "retain-state-suspended"))
            led.retain_state_suspended = 1;
        if (fwnode_property_present(child, "retain-state-shutdown"))
            led.retain_state_shutdown = 1;
        if (fwnode_property_present(child, "panic-indicator"))
            led.panic_indicator = 1;

        ret = create_gpio_led(&led, led_dat, dev, np, NULL);	//	将gpio_led结构体、gpio_led_data关联起来
        if (ret < 0) {
            fwnode_handle_put(child);
            return ERR_PTR(ret);
        }
        led_dat->cdev.dev->of_node = np;
        priv->num_leds++;
    }

    return priv;
}

函数介绍gpio_leds_create主要用于创建LED设备。

实现思路

  1. 通过device_get_child_node_count获取设备树中LED子节点的数量,根据获取到的子节点数量,分配LED设备对应的内存空间
  2. 通过device_for_each_child_node遍历每个子节点,并为每个子节点创建对应的LED设备
  3. 对于每个子节点,使用fwnode_property_read_string接口,读取设备树中相关的属性信息,如:labellinux,default-trigger等,将这些信息赋值给gpio_led结构体中
  4. 最后将遍历的每个LED,调用create_gpio_led进行设备的创建

3、create_gpio_led分析 #

3.1 相关数据结构 #

3.1.1 led_classdev #

该数据结构属于核心层,在硬件驱动层需要与其进行关联,遂在此介绍。

struct led_classdev {
    const char		*name;
    enum led_brightness	 brightness;
    enum led_brightness	 max_brightness;
    int			 flags;

    /* Lower 16 bits reflect status */
#define LED_SUSPENDED		BIT(0)
#define LED_UNREGISTERING	BIT(1)
    /* Upper 16 bits reflect control information */
#define LED_CORE_SUSPENDRESUME	BIT(16)
#define LED_SYSFS_DISABLE	BIT(17)
#define LED_DEV_CAP_FLASH	BIT(18)
#define LED_HW_PLUGGABLE	BIT(19)
#define LED_PANIC_INDICATOR	BIT(20)
#define LED_BRIGHT_HW_CHANGED	BIT(21)
#define LED_RETAIN_AT_SHUTDOWN	BIT(22)

    /* set_brightness_work / blink_timer flags, atomic, private. */
    unsigned long		work_flags;

#define LED_BLINK_SW			0
#define LED_BLINK_ONESHOT		1
#define LED_BLINK_ONESHOT_STOP		2
#define LED_BLINK_INVERT		3
#define LED_BLINK_BRIGHTNESS_CHANGE 	4
#define LED_BLINK_DISABLE		5

    /* Set LED brightness level
     * Must not sleep. Use brightness_set_blocking for drivers
     * that can sleep while setting brightness.
     */
    void		(*brightness_set)(struct led_classdev *led_cdev,
                      enum led_brightness brightness);
    /*
     * Set LED brightness level immediately - it can block the caller for
     * the time required for accessing a LED device register.
     */
    int (*brightness_set_blocking)(struct led_classdev *led_cdev,
                       enum led_brightness brightness);
    /* Get LED brightness level */
    enum led_brightness (*brightness_get)(struct led_classdev *led_cdev);

    /*
     * Activate hardware accelerated blink, delays are in milliseconds
     * and if both are zero then a sensible default should be chosen.
     * The call should adjust the timings in that case and if it can't
     * match the values specified exactly.
     * Deactivate blinking again when the brightness is set to LED_OFF
     * via the brightness_set() callback.
     */
    int		(*blink_set)(struct led_classdev *led_cdev,
                     unsigned long *delay_on,
                     unsigned long *delay_off);

    struct device		*dev;
    const struct attribute_group	**groups;

    struct list_head	 node;			/* LED Device list */
    const char		*default_trigger;	/* Trigger to use */

    unsigned long		 blink_delay_on, blink_delay_off;
    struct timer_list	 blink_timer;
    int			 blink_brightness;
    int			 new_blink_brightness;
    void			(*flash_resume)(struct led_classdev *led_cdev);

    struct work_struct	set_brightness_work;
    int			delayed_set_value;

#ifdef CONFIG_LEDS_TRIGGERS
    /* Protects the trigger data below */
    struct rw_semaphore	 trigger_lock;

    struct led_trigger	*trigger;
    struct list_head	 trig_list;
    void			*trigger_data;
    /* true if activated - deactivate routine uses it to do cleanup */
    bool			activated;
#endif

#ifdef CONFIG_LEDS_BRIGHTNESS_HW_CHANGED
    int			 brightness_hw_changed;
    struct kernfs_node	*brightness_hw_changed_kn;
#endif

    /* Ensures consistent access to the LED Flash Class device */
    struct mutex		led_access;
};

结构体名称led_classdev

文件位置include/linux/leds.h

主要作用:该结构体所包括的内容较多,主要有以下几个功能

  • brightness当前亮度值,max_brightness最大亮度
  • LED闪烁功能控制:blink_timerblink_brightnessnew_blink_brightness
  • attribute_group:创建sysfs文件节点,向上提供用户访问接口

由上面可知,在创建gpio_led_data时,顺便初始化 led_classdev结构体,赋值相关属性以及部分回调函数,最终将led_classdev注册进入LED子系统框架中,在sysfs中创建对应的文件节点。

3.2 实现流程 #

static int create_gpio_led(const struct gpio_led *template,
    struct gpio_led_data *led_dat, struct device *parent,
    struct device_node *np, gpio_blink_set_t blink_set)
{
    int ret, state;

    led_dat->gpiod = template->gpiod;
    if (!led_dat->gpiod) {
        /*
         * This is the legacy code path for platform code that
         * still uses GPIO numbers. Ultimately we would like to get
         * rid of this block completely.
         */
        unsigned long flags = GPIOF_OUT_INIT_LOW;

        /* skip leds that aren't available */
        if (!gpio_is_valid(template->gpio)) {								//	判断是否gpio合法
            dev_info(parent, "Skipping unavailable LED gpio %d (%s)\n",
                    template->gpio, template->name);
            return 0;
        }

        if (template->active_low)
            flags |= GPIOF_ACTIVE_LOW;

        ret = devm_gpio_request_one(parent, template->gpio, flags,
                        template->name);
        if (ret < 0)
            return ret;

        led_dat->gpiod = gpio_to_desc(template->gpio);						//	获取gpio组
        if (!led_dat->gpiod)
            return -EINVAL;
    }

    led_dat->cdev.name = template->name;									//	赋值一些属性信息
    led_dat->cdev.default_trigger = template->default_trigger;
    led_dat->can_sleep = gpiod_cansleep(led_dat->gpiod);
    if (!led_dat->can_sleep)
        led_dat->cdev.brightness_set = gpio_led_set;						//	设置LED
    else
        led_dat->cdev.brightness_set_blocking = gpio_led_set_blocking;
    led_dat->blinking = 0;
    if (blink_set) {
        led_dat->platform_gpio_blink_set = blink_set;
        led_dat->cdev.blink_set = gpio_blink_set;
    }
    if (template->default_state == LEDS_GPIO_DEFSTATE_KEEP) {
        state = gpiod_get_value_cansleep(led_dat->gpiod);
        if (state < 0)
            return state;
    } else {
        state = (template->default_state == LEDS_GPIO_DEFSTATE_ON);
    }
    led_dat->cdev.brightness = state ? LED_FULL : LED_OFF;
    if (!template->retain_state_suspended)
        led_dat->cdev.flags |= LED_CORE_SUSPENDRESUME;
    if (template->panic_indicator)
        led_dat->cdev.flags |= LED_PANIC_INDICATOR;
    if (template->retain_state_shutdown)
        led_dat->cdev.flags |= LED_RETAIN_AT_SHUTDOWN;

    ret = gpiod_direction_output(led_dat->gpiod, state);
    if (ret < 0)
        return ret;

    return devm_of_led_classdev_register(parent, np, &led_dat->cdev);		//	将LED设备注册到子系统中
}

函数介绍create_gpio_led创建LED设备的核心函数

实现思路

  1. 先通过gpio_is_valid接口,判断GPIO是否合法
  2. 将上层从设备树解析出来的信息,填充到gpio_led_data字段中,并且初始化部分字段,如:led_classdevgpio_desc
  3. 填充回调函数,实现相应的动作,如:gpio_led_setgpio_led_set_blockinggpio_blink_set
  4. 最后调用devm_of_led_classdev_register接口,将LED设备注册到LED框架之中。

4、回调函数分析 #

硬件驱动层,肯定包括最终操作硬件的部分,也就是上面提到的一些回调函数,属于我们驱动工程师开发的内容。

static int gpio_blink_set(struct led_classdev *led_cdev,
    unsigned long *delay_on, unsigned long *delay_off)
{
    struct gpio_led_data *led_dat = cdev_to_gpio_led_data(led_cdev);

    led_dat->blinking = 1;
    return led_dat->platform_gpio_blink_set(led_dat->gpiod, GPIO_LED_BLINK,
                        delay_on, delay_off);
}

函数介绍gpio_blink_set主要用于设置闪烁的时延

4.2 gpio_led_set 和gpio_led_set_blocking #

static inline struct gpio_led_data *
            cdev_to_gpio_led_data(struct led_classdev *led_cdev)
{
    return container_of(led_cdev, struct gpio_led_data, cdev);
}

static void gpio_led_set(struct led_classdev *led_cdev,
    enum led_brightness value)
{
    struct gpio_led_data *led_dat = cdev_to_gpio_led_data(led_cdev);
    int level;

    if (value == LED_OFF)
        level = 0;
    else
        level = 1;

    if (led_dat->blinking) {
        led_dat->platform_gpio_blink_set(led_dat->gpiod, level,
                         NULL, NULL);
        led_dat->blinking = 0;
    } else {
        if (led_dat->can_sleep)
            gpiod_set_value_cansleep(led_dat->gpiod, level);
        else
            gpiod_set_value(led_dat->gpiod, level);
    }
}

static int gpio_led_set_blocking(struct led_classdev *led_cdev,
    enum led_brightness value)
{
    gpio_led_set(led_cdev, value);
    return 0;
}

函数介绍gpio_led_setgpio_led_set_blocking主要用于设置亮度,区别在于gpio_led_set 是不可睡眠的,gpio_led_set_blocking是可休眠的。

5、总结 #

上面我们了解了硬件驱动层的实现流程以及相关数据结构,总结来看:

5.1 数据结构之间的关系如下 #

LED子系统-LED数据结构.drawio

5.2 函数实现流程如下 #

gpio_led_probe(drivers/leds/leds-gpio.c)
    |--> gpio_leds_create
        |--> create_gpio_led            //  创建LED设备
            |--> devm_of_led_classdev_register      

5.3 主要作用如下 #

  1. 从设备树获取LED相关属性信息,赋值给gpio_led结构体
  2. gpio_ledgpio_leds_privled_classdev等数据结构关联起来
  3. LED设备注册进入LED子系统中
欢迎关注【嵌入式艺术】,董哥原创!
img