【MMC子系统】四、MMC控制器驱动层 #
MMC
控制器驱动层一般为chip manufacturer
做的事,不同的芯片实现方式不尽相同。
Linux
内核源码,相当大的一部分都是由Device Drivers
程序代码组成,其次另一大部分就是那些你从来都没有听说过的Filesystem Format
组成,真正核心的代码非常短小精悍的。
当然,设备驱动程序也有一套既定的框架,按照框架来编写,实现对应的接口就可以了,在这里,我们主要分析一下MMC
控制器驱动的实现框架,不拘泥于细节。
下文以
sunxi-mmc.c
为例来分析,基于Linux4.19
4.1 通用驱动框架 #
static int sunxi_mmc_probe(struct platform_device *pdev) {
.....
}
static const struct of_device_id sunxi_mmc_of_match[] = {
{ .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
{ .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
{ .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
{ .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
{ .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
{ .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
{ .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
static const struct dev_pm_ops sunxi_mmc_pm_ops = {
SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
sunxi_mmc_runtime_resume,
NULL)
};
static struct platform_driver sunxi_mmc_driver = {
.driver = {
.name = "sunxi-mmc",
.of_match_table = of_match_ptr(sunxi_mmc_of_match),
.pm = &sunxi_mmc_pm_ops,
},
.probe = sunxi_mmc_probe,
.remove = sunxi_mmc_remove,
};
module_platform_driver(sunxi_mmc_driver);
MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
MODULE_ALIAS("platform:sunxi-mmc");
这套基本的框架,老生常谈,其主要功能就是:按照of_match_table
匹配表,来实现platform_device
和platform_driver
的匹配,然后执行probe
函数。
4.2 注册与注销函数 #
static int sunxi_mmc_probe(struct platform_device *pdev) {
.....
}
static int sunxi_mmc_remove(struct platform_device *pdev) {
......
}
比较重要的两个函数,我们一般insmod xxx.ko
后,执行完_init
函数后,最终如果设备树和驱动匹配成功,会调用probe
函数,相同,卸载驱动时,也会调用到remove
函数。
4.2.1 probe函数 #
probe
函数很长,我们挑重点来了解
static int sunxi_mmc_probe(struct platform_device *pdev)
{
struct sunxi_mmc_host *host;
struct mmc_host *mmc;
int ret;
mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
if (!mmc) {
dev_err(&pdev->dev, "mmc alloc host failed\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, mmc);
host = mmc_priv(mmc);
host->dev = &pdev->dev;
host->mmc = mmc;
spin_lock_init(&host->lock);
// 1. 获取设备树资源
ret = sunxi_mmc_resource_request(host, pdev);
if (ret)
goto error_free_host;
......
// 2. 初始化MMC控制器
mmc->ops = &sunxi_mmc_ops;
mmc->max_blk_count = 8192;
mmc->max_blk_size = 4096;
mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits);
mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
/* 400kHz ~ 52MHz */
mmc->f_min = 400000;
mmc->f_max = 52000000;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_ERASE | MMC_CAP_SDIO_IRQ;
if (host->cfg->clk_delays || host->use_new_timings)
mmc->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
ret = mmc_of_parse(mmc);
if (ret)
goto error_free_dma;
/* TODO: This driver doesn't support HS400 mode yet */
mmc->caps2 &= ~MMC_CAP2_HS400;
ret = sunxi_mmc_init_host(host);
if (ret)
goto error_free_dma;
.......
// 3. 将mmc控制器加入到子系统中
ret = mmc_add_host(mmc);
if (ret)
goto error_free_dma;
dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n",
mmc->max_req_size >> 10,
host->use_new_timings ? ", uses new timings mode" : "");
return 0;
error_free_dma:
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
error_free_host:
mmc_free_host(mmc);
return ret;
}
函数作用:从设备树获取配置信息,并初始化mmc
控制器,最后将mmc
加入到子系统中。
上面代码已经作了简单注释
4.2.2 remove函数 #
remove
函数看起来就比较简单了,就是probe
函数的反操作
static int sunxi_mmc_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
// 1. 移除子系统
mmc_remove_host(mmc);
pm_runtime_force_suspend(&pdev->dev);
disable_irq(host->irq);
sunxi_mmc_disable(host);
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
// 2. 释放mmc内存
mmc_free_host(mmc);
return 0;
}
函数作用:将mmc
移除子系统,并释放内存。
更多干货可见:高级工程师聚集地,助力大家更上一层楼!
 
4.3 ops函数实现 #
了解过基本驱动框架的都知道,最为核心的就是ops
相关的接口了,上层调用底层代码,全靠它。
在probe
函数中,我们看到mmc->ops = &sunxi_mmc_ops
的代码,就是注册了ops
结构体,最后通过mmc_add_host
接口,打通核心层与MMC
控制器驱动层的界限。
static const struct mmc_host_ops sunxi_mmc_ops = {
.request = sunxi_mmc_request,
.set_ios = sunxi_mmc_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmc_gpio_get_cd,
.enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
.start_signal_voltage_switch = sunxi_mmc_volt_switch,
.hw_reset = sunxi_mmc_hw_reset,
.card_busy = sunxi_mmc_card_busy,
};
.request
:上层发送命令请求.set_ios
:上层设置时钟频率,总线数量的接口.get_ro
:表示卡的读写状态.get_cd
:检测卡是否存在的接口.enable_sdio_irq
:提供给上层打开sdio
中断的接口.hw_reset
:硬件重置接口.card_busy
:反映卡的状态接口
具体怎么实现,就是chip manufacturer
做的事情,我们这里只需要知道,上层通过封装的接口,最终通过ops->xxx
函数来将控制寄存器进行数据传输。
4.4 PM接口 #
PM
就是我们说的Power Manager
电源管理,用于功耗控制。
#ifdef CONFIG_PM
static int sunxi_mmc_runtime_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
int ret;
ret = sunxi_mmc_enable(host);
if (ret)
return ret;
sunxi_mmc_init_host(host);
sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
sunxi_mmc_set_clk(host, &mmc->ios);
enable_irq(host->irq);
return 0;
}
static int sunxi_mmc_runtime_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
/*
* When clocks are off, it's possible receiving
* fake interrupts, which will stall the system.
* Disabling the irq will prevent this.
*/
disable_irq(host->irq);
sunxi_mmc_reset_host(host);
sunxi_mmc_disable(host);
return 0;
}
#endif
其主要功能就是:确保休眠时,所有外设的时钟使能需要关闭,来确保功耗最低。
MMC
控制器驱动就是就是这么简单,不需要过多了解的,咱们就先不关心,聚焦于整个框架。